Search results for "charged particles"

showing 10 items of 15 documents

Digital pulse-shape analysis with a TRACE early silicon prototype

2014

[EN] A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination. K.; 2014 Elsevier B.V. All rights reserved

PhysicsNuclear and High Energy PhysicsSilicon detectorSiliconPhysics::Instrumentation and Detectorsbusiness.industryLight-charged particlesDetectorchemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Particle detectorParticle identificationSemiconductor detectorParticle identificationTECNOLOGIA ELECTRONICAOpticschemistryMeasuring instrumentGamma-ray spectroscopyCoaxialbusinessDigital pulse shape analysisInstrumentationElectronic circuit
researchProduct

A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope.

2011

An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow-up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained …

Optical telescopesAMANDASelection proceduresRobust reconstructionMonte Carlo methodAtmospheric muonsReal-time applicationNeutrino telescope01 natural sciencesHigh Energy Physics - ExperimentFast algorithmsHigh Energy Physics - Experiment (hep-ex)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsDetectorMonte Carlo SimulationMonte Carlo methodsComputer simulationLIGHTddc:540Física nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAlgorithmAlgorithmsFLUXOnline monitoring[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeFOS: Physical sciencesTrack reconstructionOptical telescopeNuclear physicsMuon tracks0103 physical sciencesAngular resolutionLight sources010306 general physicsOptical follow-upDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)MuonANTARESneutrino telescope; track reconstruction010308 nuclear & particles physicsCharged particlesTrack (disk drive)track reconstructionAstronomy and Astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics - Data Analysis Statistics and ProbabilityFISICA APLICADAATMOSPHERIC NEUTRINOSNeutrino telescopesSYSTEMData Analysis Statistics and Probability (physics.data-an)
researchProduct

Search for pair-production of long-lived heavy charged particles in e+e− annihilation

1997

A search for pair-production of long-lived, heavy, singly-charged particles has been performed with data collected by the ALEPH detector at a centre-of-mass energy of 172 GeV. Data at \sqrt{s} = 161, 136, and 130 GeV are also included to improve the sensitivity to lower masses. No candidate is found in the data. A model-independent 95% confidence level upper limit on the production cross section at 172 GeV of 0.2-0.4pb is derived for masses between 45 and 86 GeV/c^2. This cross section limit implies, assuming the MSSM, a lower limit of 67 (69) GeV/c^2 on the mass of right- (left-) handed long-lived scalar taus or scalar muons and of 86 GeV/c^2 on the mass of long-lived charginos.

Nuclear and High Energy PhysicsParticle physicsElectron–positron annihilationScalar (mathematics)heavy charged particlescultural studiesFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsALEPH ExperimentHigh Energy Physics - Experiment (hep-ex)Charginouniversity0103 physical sciencesprofessor[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment010306 general physicsALEPH experimentPhysicsALEPH Experiment; LEP; heavy charged particlesscholarAnnihilationMuon010308 nuclear & particles physicsPhysicsLEPCharged particlePair productionresearcherHigh Energy Physics::ExperimentFranceParticle Physics - Experimentcommunication studies
researchProduct

Calibration of the RPC charge readout in the ARGO-YBJ experiment

2012

""The charge readout of Resistive Plate Chambers (RPCs) is implemented in the ARGO-YBJ experiment to measure the charged particle density of the shower front up to 10^4\\\/m^2, enabling the study of the primary cosmic rays with energies in the ''knee'' region. As the first time for RPCs being used this way, a telescope with RPCs and scintillation detectors is setup to calibrate the number of charged particles hitting a RPC versus its charge readout. Air shower particles are taken as the calibration beam. The telescope was tested at sea level and then moved to the ARGO-YBJ site for coincident operation with the ARGO-YBJ experiment. The charge readout shows good linearity with the particle de…

Optical telescopesNuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCamere a Piastre Resistive (RPC)Resistive plate chamberAstrophysics::High Energy Astrophysical PhenomenaCosmic raylaw.inventionTelescopeSettore FIS/05 - Astronomia E AstrofisicaOpticslawCoincidentAir showersCalibrationSea levelInstrumentationParticle densitiesCosmic raysResistive Plate Chambers Charge read-out Extended Air ShowersPhysicsAir showers Charge readout Dynamic range Knee regions Particle densities Resistive plate chambers; Calibration Charged particles Cosmic rays Experiments Optical telescopes Sea level Telescopes; Particle spectrometersResistive touchscreenScintillationDynamic rangeCharge readoutParticle spectrometersbusiness.industryCharged particlesSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsCharged particleAir showerCalibrazione della Risposta Analogica di RPCKnee regionsLettura Analogica di RPCCalibrationResistive plate chambersbusinessExperimentsTelescopes
researchProduct

Jet fragmentation transverse momentum distributions in pp and p-Pb collisions at √s, √sNN = 5.02 TeV

2021

Jet fragmentation transverse momentum (jT) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at √sNN = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT algorithm with resolution parameter R = 0.4 in the pseudorapidity range |η| < 0.25. The jT values are calculated for charged particles inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured jT distributions are compared with a variety of parton-shower models. Herwig and Pythia 8 based models describe the data well for the higher jT region, while they underestimate the low…

related to the perturbative component of the fragmentation processthe measured trends are successfully described by all models except for Herwig. For the wide componentHerwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation.Nuclear and High Energy Physicswhile that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow componentHeavy Ion Experimentsand with a Gaussian for lower jT values (called the “narrow component”)hiukkasfysiikkawhile they underestimate the lower jT region. The jT distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher jT values (called the “wide component”)predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentumJet fragmentation transverse momentum (jT) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at √sNN = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT algorithm with resolution parameter R = 0.4 in the pseudorapidity range |η| < 0.25. The jT values are calculated for charged particles inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured jT distributions are compared with a variety of parton-shower models. Herwig and PYTHIA 8 based models describe the data well for the higher jT region
researchProduct

Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector

2020

The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139  fb−1 of √s=13  TeV proton-proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to ac…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Protonshowers [parton]13000 GeV-cmsPhysics::Instrumentation and DetectorsHadronGeneral Physics and Astronomyjet: transverse momentumPhysical Effects01 natural sciencestransverse momentum [jet]High Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)Charged ParticlesSubatomic PhysicsComputingMilieux_COMPUTERSANDEDUCATIONscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Parton showerNuclear ExperimentGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)PhysicsSettore FIS/01Jet (fluid)Large Hadron ColliderDouble Differential Cross SectionsDetectorhadronic [jet]Monte Carlo [numerical calculations]ATLASTransverse Momentacharged particleCharged particlemedicine.anatomical_structureCERN LHC Coll:Nuclear and elementary particle physics: 431 [VDP]colliding beams [p p]numerical calculations: Monte CarloParticle Physics - Experimentp p: scatteringCiências Naturais::Ciências Físicas530 Physicsformation [jet]Astrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesMeasurements ofLHC ATLAS High Energy Physicsjet: formation530GeneralLiterature_MISCELLANEOUSMonte Carlo Modelparton: showersNuclear physicsdifferential cross section: measuredAtlas (anatomy)Fragmentationmeasured [differential cross section]0103 physical sciencesmedicineddc:530High Energy Physicsstructure010306 general physicsATLAS CollaborationScience & Technology010308 nuclear & particles physicsComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKSFísicajet: hadronic530 Physikangular resolutionProton Proton CollisionsElementary Particles and FieldsHigh Energy Physics::ExperimentDetector EffectsHadron-hadron collisionsp p: colliding beamsMathematicsofComputing_DISCRETEMATHEMATICSacceptanceexperimental results
researchProduct

Search for heavy long-lived charged particles with the ATLAS detector in pp collisions at root s=7 TeV

2011

A search for long-lived charged particles reaching the muon spectrometer is performed using a data sample of 37 pb[superscript −1] from pp collisions at √s = 7 TeV collected by the ATLAS detector at the LHC in 2010. No excess is observed above the estimated background. Stable [~ over τ] sleptons are excluded at 95% CL up to a mass of 136 GeV, in GMSB models with N[subscript 5] = 3, mmessenger = 250 TeV, sign(μ) = 1 and tanβ = 5. Electroweak production of sleptons is excluded up to a mass of 110 GeV. Gluino R-hadrons in a generic interaction model are excluded up to masses of 530 GeV to 544 GeV depending on the fraction of R-hadrons produced as [~ over g]-balls.

Nuclear and High Energy PhysicsParticle physicsAtlas detectorCiências Naturais::Ciências FísicasPhysics::Instrumentation and Detectors:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2SUSY; ATLAS; Long-lived particles01 natural sciences530CHARGED PARTICLESHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Muon spectrometerAtlas (anatomy)0103 physical sciencesmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530High Energy Physics010306 general physicsNuclear ExperimentPhysicsScience & TechnologyATLAS detector010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySettore FIS/01 - Fisica SperimentaleFísicaSUSYSupersymmetryATLASCharged particleLong-lived particlesmedicine.anatomical_structureHADRON-HADRON COLLISIONSR-hadronExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearHigh Energy Physics::ExperimentLHCsupersymmetryParticle Physics - Experiment
researchProduct

Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

2014

Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a $|\Delta \eta|$ gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the prese…

Pb-Pb collisionsazimuthal correlationsPb-Pb and p-Pb collisions at the LHCPpb CollisionsHigh multiplicityppQUARK-GLUON PLASMAALICEp-Pb collisionsRoot-S(Nn)=5.02 Tevcharged particlesPbPbNuclear Experiment (nucl-ex)Nuclear ExperimentPhysicsLarge Hadron Colliderazimuthal correlations; p-Pb collisions; Pb-Pb collisionsFlowPhysicsLong-RangeCharged particle3. Good health:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]AzimuthPRIRODNE ZNANOSTI. Fizika.LHCThird harmonicLHC; ALICE; pp; PbPb; Azimuthal correlationsParticle Physics - ExperimentParticle physicsNuclear and High Energy PhysicsVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciencesEccentricities[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear physicsNuclear Physics - ExperimentDependenceCumulantNUCLEUS-NUCLEUS COLLISIONS; QUARK-GLUON PLASMA; ANGULAR-CORRELATIONSTransverse-Momentumta114VDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431NUCLEUS-NUCLEUS COLLISIONS:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]ALICE experimentMultiplicity (mathematics)ANGULAR-CORRELATIONSNATURAL SCIENCES. Physics.Quark–gluon plasma
researchProduct

Search for relativistic magnetic monopoles with the ANTARES neutrino telescope

2012

Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 ¿ 10¿17 and 8.9 ¿ 10¿17 cm¿2 s¿1 sr¿1 for monopoles with velocity ß ¿ 0.625.

FLUXMuon backgroundParticle physicsGauge modelMagnetic monopolesAstrophysics::High Energy Astrophysical PhenomenaMagnetic monopoleneutrino telescopes; antares; magnetic monopoleFOS: Physical sciencesCosmic ray01 natural sciencesNuclear physics0103 physical sciencesNeutronFIELD010306 general physicsDETECTORCherenkov radiationZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)NeutronsPhysicsSPECTRUMAtmospheric neutrinosMagnetic monopoleANTARES:Física::Acústica [Àrees temàtiques de la UPC]MuonCharged particles010308 nuclear & particles physicsAstronomy and AstrophysicsMonopols magnèticsUpper limitsNeutrino detectorMass scaleFISICA APLICADA[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Física nuclearData setsNeutrino telescopes[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)TelescopesAstroparticle Physics
researchProduct

On magnetic guidance of charged particles

2016

High precision beta decay experiments with polarized neutrons, employing magnetic guiding fields for the decay electrons in combination with energy dispersive detectors, initiated detailed studies of the point spread function (PSF) for homogeneous magnetic fields. A PSF describes the radial probability distribution of mono-energetic electrons at the detector plane which were emitted from a point-like source. With regard to accuracy considerations for high-precision experiments unwanted singularities occur as function of the radial detector coordinate which have recently been discussed in detail by Dubbers (2015) [3]. In the present article mathematical inconsistencies in the approximations …

Point spread functionPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsMonte Carlo methodDetectorElectron01 natural sciencesCharged particlelcsh:QC1-999Computational physicsMagnetic fieldQuantum mechanics0103 physical sciencesOrbit (dynamics)Charged particles in magnetic fieldsNeutron010306 general physicslcsh:PhysicsPhysics Letters B
researchProduct